Very-high-precision solutions of a class of Schrödinger equations

Asif Mushtaq,∗ Amna Noreen,† Kåre Olaussen,‡ and Ingjald Øverbo§

Institutt for fysikk, NTNU

(Dated: April 15, 2010)

We introduce and investigate a method to solve a class of Schrödinger equation eigenvalue problems numerically to ridiculously high precision – like tens to hundred of thousands of digits D. The memory requirement, and the number of high precision algebraic operations, of the method scales essentially linearly with D when only the eigenvalue is computed. However, since the (Schönhagen-Strassen) algorithm for multiplying high precisions number scales like $D \log D \log \log D$ the time requirement of the method increases slightly faster than D^3.

∗ Electronic address: asif@tf.phys.ntnu.no
† Electronic address: Amna.Noreen@ntnu.no
‡ Electronic address: Kare.Olaussen@ntnu.no
§ Electronic address: Ingjald.Overbo@ntnu.no