Monte Carlo simulations of the HP model (the “Ising model of protein folding”).

D. P. Landau, T. Wüst*, and Y.-W. Li
Center for Simulational Physics
The University of Georgia
Athens, GA 30602, U.S.A.

The HP model is a simple, prototypical lattice polymer model for protein folding. It consists of only two types of monomers, hydrophobic (H) and polar (P), in a sequence chosen so as to mimic a real protein [1]. Interactions are restricted to an attractive coupling between non-bonded hydrophobic monomers that occupy nearest-neighbor sites. Using Wang-Landau sampling with suitable Monte Carlo trial moves (pull and bond-rebridging moves combined) we have determined the density of states and thermodynamic properties for several characteristic sequences of H- and P-mers [2]. As the temperature is lowered these proteins first undergo a collapse “transition” to a globule state followed by a second “transition” into a native state. When placed in the proximity of an attractive surface, there is a competition between surface adsorption and folding that leads to an intriguing sequences of “transitions” that depend upon the relative interaction strengths and are largely inaccessible to “standard” Monte Carlo methods.

This work was supported in part by NSF Grant DMR – 0810223

* Current Address: Swiss Federal Research Institute WSL, CH-8903 Birmensdorf, Switzerland

References
